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Abstract

Global chaos synchronization of two identical non-autonomous horizontal platform systems coupled by linear state

error feedback controller is investigated. The sufficient criteria for global chaos synchronization are deduced based on the

stability theory of linear time-varied systems and Lyapunov’s direct method, of which, the criteria related to general

coupling matrix are first proved and applied to derive the ones related to some special coupling matrices. In the examples,

the coupling strengths are designed by the obtained criteria and the appearances of chaos synchronization are verified. It is

analytically and numerically examined that the synchronization criteria based on Lyapunov’s direct method are sharper

than the criteria based on the stability theory of linear time-varied systems.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization of chaotic systems has been widely investigated [1–13] since the early work by Pecora and
Carroll [4]. In the past decade, the research on chaos synchronization has intensively focused on the
autonomous chaotic systems, e.g. Lur’e systems [5–9], Lorenz system [10,11], Chen [12] and Rössler systems
[13], etc. Recently, many non-autonomous chaotic systems have been discovered in engineering and life science
[14–20], and their synchronization has been discussed in Refs. [15–17,19].

Ge et al. [16] numerically verified that two identical horizontal platform systems coupled, respectively, by
linear, sinusoidal and exponential state error feedback controllers can achieve chaos synchronization. The
coupling strengths resulting in chaos synchronization are detected according to negativity of all Lyapunov
exponents of the driven system. However, the condition that all Lyapunov exponents are negative has been
confirmed to be only necessary but not sufficient for chaos synchronization [1,4].

In this paper, using the stability theory on linear time-varied systems and Lyapunov’s direct method [21], we
deduce the sufficient criterion for global chaos synchronization of two identical horizontal platform systems
coupled by linear state error feedback controller. The algebraic criteria related to general and some special
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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coupling matrices are derived. These sufficient criteria can be applied to directly design the coupling strength
resulting in the synchronization.

The structure of this paper is as follows. In Section 2, we present a master–slave synchronization scheme for
non-autonomous horizontal platform systems, and derive the relevant error system. In Section 3, the sufficient
criteria for global chaos synchronization are proved based on the stability theory on linear time-varied systems
and Lyapunov’s direct method. In Section 4, the examples are illustrated to verify the theoretical results.
Finally, the concluding remark is described in Section 5.

2. Synchronization problem and error system

In 2003, Ge et al. studied the chaotic phenomena of the following non-autonomous horizontal platform
system with an accelerometer [16]

A €yþD _yþ rg sin y�
3g

R
ðB� CÞ cos y sin y ¼ F cos ot, (1)

where y denotes the rotation of the platform relative to the earth, A, B and C are, respectively, the inertia
moment of the platform for three axes which penetrate the mass center of the platform, D is the damping
coefficient, r the proportional constant of the accelerometer, g the acceleration constant of gravity, R the
radius of the Earth, and F cos ot harmonic torque. More details of this model can be seen in Ref. [16].

The horizontal platform system (1) can be represented as the non-autonomous form:

_x1 ¼ x2;

_x2 ¼ �ax2 � b sin x1 þ l cos x1 sin x1 þ h cos ot;
(2)

where

a ¼
D

A
40; b ¼

rg

A
40; l ¼

3g

RA
ðB� CÞ; h ¼

F

A
40.

Let x ¼ ðx1; x2Þ
T
2 R2. The vector form of the system (2) is

_x ¼ Axþ f ðxÞ þmðtÞ (3)

with

A ¼
0 1

0 �a

� �
; f ðxÞ ¼

0

�b sin x1 þ l cos x1 sin x1

 !
; mðtÞ ¼

0

h cos ot

� �
.

Now we consider a master–slave synchronization scheme for two identical horizontal platform systems
coupled by a linear state error feedback controller uðtÞ ¼ Kðx� zÞ with the constant coupling matrix K 2 R2�2

as follows:

M : _x ¼ Axþ f ðxÞ þmðtÞ,

S : _z ¼ Azþ f ðzÞ þmðtÞ þ uðtÞ,

C : uðtÞ ¼ Kðx� zÞ, ð4Þ

where the state variables of the slave system z ¼ ðz1; z2Þ
T
2 R2.

Defining the error variable e ¼ x� z, we can obtain the dynamical error system

_e ¼ ðA� KÞeþ f ðxÞ � f ðzÞ ¼ ðA� KÞeþQðtÞe ¼ ðA� K þQðtÞÞe, (5)

where

Q ¼
0 0

qðtÞ 0

 !
,

qðtÞ ¼
�bðsin x1 � sin z1Þ þ lðsin x1 cos x1 � sin z1 cos z1Þ

x1 � z1
. (6)
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Our aim is to select the coupling matrix K such that the trajectories xðtÞ and zðtÞ of master and slave systems,
wherever the choice of the initial states xð0Þ and zð0Þ, satisfy

lim
t!1
jjxðtÞ � zðtÞjj ¼ 0, (7)

where jj � jj denotes the Euclidean norm of the vector.
Obviously, e ¼ 0 is an equilibrium point of the error system (5). Chaos synchronization in the sense of

Eq. (7) is equivalent to global asymptotic stability of the linear time-varied error system (5) at the origin.

3. Sufficient criteria for global chaos synchronization

The following lemma will be applied to prove the main theorems of the paper.

Lemma 1. For qðtÞ defined by (6), the inequality

jqðtÞjpbþ jlj (8)

holds.

Proof. By the differential mean-value theorem, we have
sin x1 � sin z1 ¼ cos xðx1 � z1Þ, xA[x1, z1] or [z1, x1], and
sin 2x1 � sin 2z1 ¼ 2 cosð2ZÞðx1 � z1Þ,ZA[x1, z1] or [z1, x1].
So,

qðtÞ ¼
�bðsin x1 � sin z1Þ þ l=2ðsin 2x1 � sin 2z1Þ

x1 � z1
¼ �b cos xþ l cosð2ZÞ,

and thus inequality (8) holds. &

We now utilize the stability theory on linear time-varied systems to derive the sufficient criterion for global
chaos synchronization in the sense of Eq. (7). The following theorem is related to general control matrix

K ¼
k11 k12

k21 k22

 !
2 R2�2. (9)

Theorem 1. If the coupling matrix (9) is selected such that

k11 þ k22 þ a40, (10)

4k11ðk22 þ aÞ4ðj1� k12 � k21j þ bþ jljÞ2, (11)

then the master– slave scheme (4) achieves global chaos synchronization.

Proof. According to the stability theory on linear time-varied systems, we know the linear time-varied system
(5) is globally asymptotically stable at the origin, if

A� K þQþ ðA� K þQÞT ¼
�2k11 1þ qðtÞ � ðk12 þ k21Þ

1þ qðtÞ � ðk12 þ k21Þ �2ðk22 þ aÞ

 !
(12)

is negative definite.



ARTICLE IN PRESS
X. Wu et al. / Journal of Sound and Vibration 295 (2006) 378–387 381
The eigenvalues l of the matrix ðA� K þQÞ þ ðA� K þQÞT satisfy

jlI2 � ðA� K þQÞ � ðA� K þQÞTj

¼ l2 þ 2ðk11 þ k22 þ aÞlþ 4k11ðaþ k22Þ � ð1þ q� k12 � k21Þ
2
¼ 0.

Hence, from Routh–Hurwitz criterion of the matrix theory [22], it follows that matrix (12) is negative
definite if and only if

k11 þ k22 þ a40,

2ðk11 þ k22 þ aÞ 1

0 4k11ðaþ k22Þ � ð1þ q� k12 � k21Þ
2

�����
�����40,

or, equivalently,

k11 þ k22 þ a40,

4k11ðaþ k22Þ � ð1þ q� k12 � k21Þ
240. ð13Þ

By Lemma 1, we have

j1þ q� k12 � k21jpj1� k12 � k21j þ jqjpj1� k12 � k21j þ bþ jlj.

Inequalities (13) then hold on conditions (10) and (11). &

Based on the above theorem, some synchronization criteria with respect to simple controller may be
obtained, which are represented in the following corollaries.

Letting inequalities (10) and (11) be with k11 ¼ k1; k22 ¼ k2, and k12 ¼ k21 ¼ 0, we have

Corollary 1. If the coupling matrix defined by K ¼ diagfk1; k2g is selected such that

k1 þ k2 þ a40, (14)

4k1ðk2 þ aÞ4ð1þ bþ jljÞ2, (15)

then the master– slave scheme (4) achieves global chaos synchronization.

Further supposing k1 ¼ k2 ¼ k, we obtain

Corollary 2. If the coupling matrix K ¼ kI2 is selected such that

k4
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ð1þ bþ jljÞ2

q
2

40, (16)

then the master– slave scheme (4) achieves global chaos synchronization.

Taking k1 ¼ k and k2 ¼ 0 in inequalities (14) and (15), we can prove

Corollary 3. If the coupling matrix defined by K ¼ diagfk; 0g is selected such that

k4
ð1þ bþ jljÞ2

4a
, (17)

then the master– slave scheme (4) achieves global chaos synchronization.

Remark 1. The above synchronization criteria are based on the linear matrix inequality (12), which may be
conservative. In the following, we will give some more flexible (sharper) synchronization criteria using
Lyapunov’s direct method.
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Theorem 2. If there exists a symmetric positive definite matrix P ¼
p11 p12

p12 p22

 !
2 R2�2 and the coupling matrix

K ¼
k11 k12

k21 k22

 !
2 R2�2 such that for any t40 the matrix

½A� K þQðtÞ�TPþ P½A� K þQðtÞ� (18)

is negative definite, then the master– slave scheme (4) achieves global chaos synchronization.

Proof. Take a quadratic Lyapunov function

V ðeÞ ¼ eTPe

with the symmetric positive definite matrix P ¼
p11 p12

p12 p22

 !
. The derivative of V ðeÞ with respect to time along

the system trajectory (5) is

_V ðeÞ ¼ _eTPeþ eTP_e ¼ eT½ðA� K þQÞTPþ PðA� K þQÞ�e.

_V ðeÞo0 if matrix (18) is negative definite for any t40.
Hence, the linear time-varied system (5) is globally asymptotically stable on condition that matrix (18) is

negative definite. &

Theorem 3. If the symmetric positive definite matrix P ¼
p11 p12

p12 p22

 !
and coupling matrix K ¼

k11 k12

k21 k22

 !
are selected such that

O1 ¼ �k11p11 � k21p12 þ jp12jðbþ jljÞo0, (19)

O2 ¼ p12ð1� k12Þ � p22ðaþ k22Þo0, (20)

4O1O24½jp11ð1� k12Þ � p12ðk11 þ k22 þ aÞ � p22k21j þ p22ðbþ jljÞ�
2, (21)

then inequality (18) holds, hence the master– slave scheme (4) achieves global chaos synchronization.

Proof. We first have

ðA� K þQÞTPþ PðA� K þQÞ

¼
�2k11p11 þ 2p12ðq� k21Þ p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ

p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ 2p12ð1� k12Þ � 2p22ðaþ k22Þ

 !
.

The above symmetric matrix is negative definite if and only if

�2k11p11 þ 2p12ðq� k21Þo0, (22)

2p12ð1� k12Þ � 2p22ðaþ k22Þo0, (23)

½�2k11p11 þ 2p12ðq� k21Þ�½2p12ð1� k12Þ � 2p22ðaþ k22Þ�

� ½p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ�
240. ð24Þ
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Since the matrix P is positive definite, we have p2240. It follows from Lemma 1 that

�2k11p11 þ 2p12ðq� k21Þp2O1,

p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ
�� ��

p p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ � p22k21

�� ��þ p22ðbþ jljÞ.

Hence for any t40, inequalities (22)–(24) hold if inequalities (19)–(21) are satisfied. &

The following corollaries are with respect to the simplified controllers.

Corollary 4. If the coupling matrix defined by K ¼ diagfk1; k2g and the symmetric positive definite matrix

P ¼
p11 p12

p12 p22

 !
are selected such that

k14
jp12jðbþ jljÞ

p11

, (25)

k24
p12 � ap22

p22

, (26)

4½k1p11 � jp12jðbþ jljÞ�½k2p22 � p12 þ ap22�

4½jp11 � p12ðk1 þ k2 þ aÞj þ p22ðbþ jljÞ�
2 ð27Þ

then the master– slave scheme (4) achieves global chaos synchronization.

Proof. It follows from the positive definite P that p1140 and p2240. Inequalities (25)–(29) can be obtained
according to inequalities (19)–(21) with k11 ¼ k1; k22 ¼ k2 and k12 ¼ k21 ¼ 0. &

Corollary 5. If the coupling matrix defined by K ¼ kI2 and the symmetric positive definite matrix P ¼

p11 p12

p12 p22

 !
are selected such that

k4max
jp12jðbþ jljÞ

p11

�
;

p12 � ap22

p22

�
X0, (28)

4ðp11p22 � p2
12Þk

2
� 4k½2p22jp12jðbþ jljÞ þ p11ðp12 � ap22Þ

� jp12ðp11 � ap12Þj� þ 4jp12jðbþ jljÞðp12 � ap22Þ

� ½jp11 � ap12j þ p22ðbþ jljÞ�
240 ð29Þ

then the master– slave scheme (4) achieves global chaos synchronization.

Proof. It is easy to get

½jp11 � p12ðk1 þ k2 þ aÞj þ p22ðbþ jljÞ�
2p½jp11 � ap12j þ jp12ðk1 þ k2Þj þ p22ðbþ jljÞ�

2. (30)

Hence, inequalities (28) and (29) can be obtained by letting k1 ¼ k2 ¼ k in inequalities (25)–(27) and (30).
Again since p11p22 � p2

1240, the solution k to inequality (29) exists. &

Remark 2. We may as well select p12 ¼ 0 and p11 ¼ p22ðbþ jljÞ40 to construct a symmetric positive definite

matrix P ¼ p22

bþ jlj 0

0 1

� �
. According to the matrix, the following synchronization criterion can be
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obtained by means of inequalities (28) and (29)

K ¼ kI2; k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4ðbþ jljÞ

p
� a

2
40. (31)

Comparing Eq. (31) with Eq. (16), we know that the lower bound of inequality (31) is less than that of
inequality (16). This shows the synchronization criterion (31) is sharper than (16) and the flexibility of the
inequalities (28) and (29).

It follows from inequalities (25)–(27) and (30) with k1 ¼ k and k2 ¼ 0 that

Corollary 6. If the coupling matrix defined by K ¼ diagfk; 0g and the symmetric positive definite matrix P ¼

p11 p12

p12 p22

 !
are selected such that

k4
jp12jðbþ jljÞ

p11

, (32)

p12 � ap22o0, (33)

p2
12 k2
þ 2k ½jp12ðp11 � ap12Þj þ jp12jp22ðbþ jljÞ � 2ðap22 � p12Þp11�

þ 4jp12jðap22 � p12Þðbþ jljÞ þ ½jp11 � ap12j þ p22ðbþ jljÞ�
2o0, ð34Þ

then the master– slave scheme (4) achieves global chaos synchronization.

Remark 3. If we take p12 ¼ 0 and p11 ¼ p22ðbþ jljÞ40, then the following synchronization criterion is
obtained based on inequalities (32)–(34):

K ¼ diagfk; 0g; k4
bþ jlj

a
, (35)

which is obviously sharper than Eq. (17).
Fig. 1. Chaotic attractor of the non-autonomous horizontal platform system with A ¼ 0:3, B ¼ 0:5, C ¼ 0:2, D ¼ 0:4, r ¼ 0:11559633,
R ¼ 6; 378; 000, g ¼ 9:8, F ¼ 3:4, o ¼ 1:8.
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4. Examples

We take the parameters of the horizontal platform system A ¼ 0:3, B ¼ 0:5, C ¼ 0:2, D ¼ 0:4,
r ¼ 0:11559633, R ¼ 6; 378; 000, g ¼ 9:8, F ¼ 3:4, o ¼ 1:8. The initial conditions of the master and slave
systems are ðx1ð0Þ;x2ðx2ð0ÞÞ ¼ ð�3:4; 2:1Þ and ðz1ð0Þ; z2ð0ÞÞ ¼ ð0:78;�2:9Þ, respectively, which are freely
chosen. The simulation shows the trajectory of the master system has the double scroll attractor, which implies
chaotic behavior, as shown in Fig. 1.

Let the coupling matrix K ¼ kI2. The synchronization conditions, k41:813 and k41:388, are obtained by
means of the algebraic criteria (16) and (31), respectively.

Select the coupling matrix K ¼ diagfk; 0g. It is solved that the synchronization conditions, k44:278 and
k42:833, by the algebraic criteria (17) and (35), respectively.

The above numerical calculations reveal that the lower bounds of the coupling strength (k) resulting from
the synchronization criteria (31) and (35) are less than the ones resulting from the synchronization criteria (16)
and (17), respectively. Therefore, the synchronization criteria (31) and (35) based on Lyapunov’s direct
method are, respectively, sharper than the criteria (16) and (17) based on the stability theory of linear time-
varied systems.
Fig. 2. Chaos synchronization of two non-autonomous horizontal platform systems by the controller K ¼ diagf1:4; 1:4g.
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Fig. 3. Chaos synchronization of two non-autonomous horizontal platform systems by the controller K ¼ diagf2:85; 0g.
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Taking k ¼ 1:4 for the coupling matrix K ¼ kI2 and k ¼ 2:85 for the coupling matrix K ¼ diagfk; 0g, we
illustrate the evolutions of the error variable e ¼ x� z in Figs. 2 and 3, respectively. The results imply that the
slave system is driven to asymptotically follow the chaotic dynamics of the master one. Because of the free
choice of the initial states of the master and slave systems, the synchronization is considered to be global.
5. Conclusion

A method of studying global chaos synchronization of the non-autonomous horizontal platform systems
coupled by linear state error feedback controller was proposed in this paper. The sufficient criteria for global
chaos synchronization with respect to the general coupling matrix were deduced based on the stability theory
of linear time-varied systems and Lyapunov’s direct method. These criteria were applied to derive the special
criteria related to some simple form of the coupling matrices. The examples were illustrated to verify the
theoretical results. It is examined that the synchronization criteria based on Lyapunov’s direct method are
sharper than that based on the stability theory of linear time-varied systems by means of the analytic and
numerical methods. We expect this work is extended to further research on chaos synchronization of the
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horizontal platform systems coupled by sinusoidal or exponential state error feedback controller, as in
Ref. [16].
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